An Overview of the Reliable Internet Stream Transport RIST

Ciro A. Noronha, Ph.D. Cobalt Digital Inc.

Presenter

Dr. Ciro Noronha

Ph.D. in Electrical Engineering from Stanford University

Worked in Compression Since 1995

Engineering Director/Vice President At: Optivision, SkyStream, Tandberg Television and Ericsson

Founder of ImmediaTV Maker of Encoders, Decoders, and other compression devices

Current EVP of Engineering at Cobalt Digital Member of the RIST AG, editor of the RIST Specifications President of the RIST Forum for 2020-2022

The Players

RIST Activity Group

The tech people

All the companies in the RIST AG also participate in the RIST Forum

RIST Specification

Video Services Forum (VSF) **Technical Recommendation TR-06-2**

Reliable Internet Stream Transport (RIST) Protocol Specification – Main Profile

> March 10, 2020 VSF_TR-06-2_2020_03_10

The marketing people

ENGINEERING BEYOND THE SIGNAL[™] COBALTDIGITAL.COM

RIST Forum

180+ Companies

What is the Problem?

- I want to use the Internet as a <u>cost-effective</u> means of transporting high-quality, broadcast-grade video
- But:
 - The delivery through the Internet is not guaranteed, video may glitch
 - I need to be able to use any link or combination of links anywhere to move my content - Many solutions add a lot latency (not useful for live cases) - I need my content to be protected so it doesn't get stolen - Bad people must not be able to hijack my feed (send their
- - content instead of mine)

My IT people are very busy, this must be easy and straightforward for them to set up

Other People Have Solutions Like This ...

- A number of solutions that meet many of these requirements have been available for a while from different vendors - Why is RIST different? RIST was designed as a joint effort between many of the leading companies that provide video delivery over the
 - Internet:
 - Experts with hundreds of man-years of experience freely contributed to the effort Best-of-class technologies in every aspect of the protocol, while following established standards wherever possible Final result: you have a <u>CHOICE</u> to pick the <u>BEST EQUIPMENT</u> for your specific application – you are not locked to a single vendor, and you do not need to compromise quality!

RIST Roadmap

Advanced Profile – Available (Released 2021)

Tunnel-Level ARQ (use RIST to carry any protocol, including data transfers)

Lossless Compression

Payload identification

Low-overhead media transport

Additional security and data integrity options

Common channel session management

Main Profile - Available (Released 2020)

Multi-Stream Tunneling

Stream encryption

Authentication

High Bit Rate Support

Null packet suppression

ENGINEERING BEYOND THE SIGNALTH COBALTDIGITAL.COM

Link aggregation/bonding

Redundant transmission paths

What's in RIST Simple Profile?

- Features - Bandwidth efficient Multi-link support
- IP Multicast Support

 Basic compatibility with non-RIST systems using standard RTP as the base protocol Packet loss recovery using NACK-based ARQ - No acknowledgement for packets received correctly - Lost packets are requested by the receiver and re-sent Retransmission bandwidth throttling available

Tunable tradeoff between latency and protection

The Tech Details

- states in firewalls
- return channel operating

ENGINEERING BEYOND THE SIGNAL[™] COBALTDIGITAL.COM

 Stream is sent using standard RTP - Baseline compatibility with non-RIST devices - Requires two UDP ports (RTP and RTCP) Sender transmits periodic RTCP messages to establish

Receiver transmits periodic RTCP messages to keep

- Custom "RTT Echo" message to measure latency • If packets are lost, RTCP NACK messages are sent - RFC 4585 Bitmask NACK ("salt and pepper" losses) - Custom RIST Range NACK (block losses)

Multi-Link Operation

 RIST supports usage of multiple links in parallel for a given stream Modes of operation: - Bonding The stream is split between links, in order to combine their capacities - Seamless Switching The stream is replicated over the links Receiver merges the packets If one link fails there is no glitch Follows SMPTE-2022-7

RIST Main Profile Features

- Encryption
- Authentication
- Tunneling

ENGINEERING BEYOND THE SIGNAL[™] COBALTDIGITAL.COM

- Protect high-value streams in flight on the Internet

- Make sure that the other endpoint is who you think they are

- Simple Profile requires two UDP ports per stream - If you have lots of streams, you will not be popular with IT - Support for non-RIST traffic (e.g., for in-band control) Technician can "ride" the connection back and manage the equipment Support scenarios with high (bitrate x latency) conditions Extract further bandwidth optimization - Don't transmit NULL packets, re-create them on the other side

Tunneling and Multiplexing • Purpose: combine one or more Simple Profile flows, plus optional arbitrary data traffic, into a single network flow using UDP

 Advantages: - Only one UDP port needs to be configured in the firewall, regardless of the number of flows - Only one encryption session is required to protect the whole set of streams and data - Session can be initiated from either tunnel endpoint - Tunnel is bidirectional - The same infrastructure can be optionally used for in-band control SNMP, Web, or any other management traffic

Tunneling Technology in RIST Main Profile RIST has selected GRE over UDP (RFC 8086) for

- tunneling
- Two modes:
 - Full Datagram Mode:
 - Reduced Overhead Mode:

ENGINEERING BEYOND THE SIGNAL[™] COBALTDIGITAL.COM

A complete (layer-3) IP packet is encapsulated Supports end-to-end transport of addresses and ports Supports end-to-end transport of any IP packets (for in-band) control and generic routing) Overhead: 32 bytes (2.4% over a 7-TS RTP packet)

Includes only UDP source/destination ports Supports only RIST streams – destination is the endpoint Overhead: 8 bytes (0.6% over a 7-TS RTP packet)

RIST Main Profile Content Protection

 RIST selected the Datagram Transport Layer Security (DTLS) technology for both encryption and authentication Advantages: - Datagram (UDP) version of the TLS technology already used in the Internet Mature and well-vetted - Ability to select multiple cyphers to match requirements • RIST defines a minimum list that all vendors must support Vendors are free to add other cyphers DTLS is applied to the tunnel

Required Cypher Suites

 A subset of cypher suites has been selected, and all vendors must support them • These include: - AES 128 (with RSA and ECDSA authentication) - AES 256 (with RSA and ECDSA authentication) - No Encryption (for testing or optional fallback) Good compromise between encryption strength and ability to adhere to local legal requirements Individual vendors are free to add to the list

RIST Authentication

 RIST Main Profile includes certificate-based authentication - Same technology used to authenticate bank web sites - Both server and client can authenticate each other - User is in full control: Use a "whitelist" of allowed certificates Use a private CA to sign certificates Password-based authentication (TLS-SRP) is also supported

Authentication Example

Pre-Shared Key (PSK) Operation

- Details:
 - AES 128/256-CTR encryption
 - Variable IV
 - Support for rotating keys
 - Very important for security

ENGINEERING BEYOND THE SIGNALTH COBALTDIGITAL.COM

Minimum key rotation every GRE sequence 32-bit wrap Key rotation period is configurable - Support for on-the-fly change of passphrase Used to de-authorize a subset of receivers, if needed Suitable for one-to-many and unidirectional environments

Key derived from pre-shared passphrase

RIST Main Profile supports Pre-Shared Key operation

PSK Illustration

Content

RIST Advanced Profile

 RIST Advanced Profile was released in late 2021 - No products in the market currently support Advanced Profile The primary feature of Advanced Profile is the ability to use RIST as a transport mechanism for any generic protocol, even data - Ideal for gateways Other features include lossless compression, additional encryption, and payload identification

Standards/RFCs used in RIST

NAME	STATUS	USED IN
SMPTE ST-2022-1, -2	Standard	Simple Profile
SMPTE ST-2022-7	Standard	Simple Profile
IETF RFC 3550	Internet Standard (STD 64)	Simple Profile
IETF RFC 4585	Proposed Standard	Simple Profile
IETF RFC 2784	Proposed Standard	Main Profile
IETF RFC 8086	Proposed Standard	Main Profile
IETF RFC 8259	Internet Standard (STD 90)	Main Profile
IETF RFC 3686	Proposed Standard	Main Profile
IETF RFC 6347	Proposed Standard	Main Profile
IETF RFC 7468	Proposed Standard	Main Profile
IETF RFC 5054	Informational	Main Profile
IETF RFC 8018	Informational	Main Profile

ENGINEERING BEYOND THE SIGNAL[™] COBALTDIGITAL.COM

NOTES

- TS over RTP baseline
- Seamless switching
- RTP, RTCP baseline
- ARQ NACK messages
- Tunneling
- Tunneling
- JSON for Tunnel Management
- PSK encryption
- DTLS encryption and authentication
- Encoding of certificates
- Password Authentication
- PSK key generation

Open Source RIST

FFMPEG

ENGINEERING BEYOND THE SIGNAL[™] COBALTDIGITAL.COM

Test Tools

WIRESHARK **RIST** plugins available

Simple Profile support available Main Profile support in progress

How well does it work?

Maximum Packet Loss for 2-minute Error-Free Run (single losses)

Filter Realtime monitoring									
	TS Rate			Protection statistics					
ss	Measured	PCR	Packet rate	Processed	Lost Detected	Requested	Unrecovered		
	3590048	3592995	341	0	97791	110850	0		
	0	0	0	0	0	0	0		
	6000960	6000000	570	0	34	35	0		

Source: Virtual NAB 2020 Demo

Remote Monitoring Application

- any backups

 Objective: send multiple signals from a station to a central monitoring location Signals are combined in a Multiviewer at the source Multiviewer output is compressed and transmitted using RIST to a central location • Since these are not signals to be put on air, a single Internet connection is used without

- Objective: have high signal reliability
- Each location is also connected to the Internet
- Internet

ENGINEERING BEYOND THE SIGNAL[™] COBALTDIGITAL.COM

Customer has a Corporate LAN connected using dedicated private lines between locations

• Two full copies of each stream are sent, one through the Corporate LAN and another through the

SMPTE ST-2022-7 Seamless Redundancy (part of RIST) is used

Shore-to-Ship Content over Satellite

Headend

- Objective: send multiple channels of video content for shipboard entertainment
- Content protection (encryption and authentication) is an absolute requirement
- System uses RIST Main Profile tunnels with DTLS

ENGINEERING BEYOND THE SIGNAL[™] COBALTDIGITAL.COM

RIST/DTLS

Further Reading

- VSF TR-06-1
- VSF TR-06-2
- VSF TR-06-3
- RIST Activity Group web page http://vsf.tv/RIST.shtml
- http://rist.tv
- https://rb.gy/h8ztrl

https://vsf.tv/download/technical_recommendations/VSF_TR-06-1_2020_06_25.pdf

https://www.vsf.tv/download/technical_recommendations/VSF_TR-06-2_2021-04-26.pdf

https://www.vsf.tv/download/technical_recommendations/VSF_TR-06-3_2021-10-19.pdf • RIST Forum (events, case studies)

RIST Performance Evaluation (NAB BEITC 2019)

Further Watching

RIST Promo Video

• ARQ Primer

Playlist with RIST Tradeshow Demos https://www.youtube.com/playlist?list=PLx8UACLVcUBHpshU15Rf8Ea-wQa2nisaj

RIST Forum YouTube Channel https://www.youtube.com/channel/UC2mb6-S-Nh5L4zAzcdAppzA/videos

https://www.youtube.com/watch?v=_x-f0_QV4XU

https://www.youtube.com/watch?v=ulTTDgSdmXU

THANK VOU

Contact Info: ciro.noronha@cobaltdigital.com

